

Introduction to Programming
with Greenfoot

Object-Oriented Programming in Java
With Games and Simulations

2e

A01_KOLL4292_02_SE_FM.indd 1 2/3/15 9:41 AM

A01_KOLL4292_02_SE_FM.indd 2 2/3/15 9:41 AM

This page intentionally left blank

Introduction to Programming
with Greenfoot

Object-Oriented Programming in Java
With Games and Simulations

Boston  Columbus  Indianapolis  New York  San Francisco  Hoboken
Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montréal  Toronto

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo

Michael Kölling

2e

A01_KOLL4292_02_SE_FM.indd 3 2/3/15 9:41 AM

Editorial Director: Marcia Horton
Executive Editor: Tracy Johnson
Editorial Assistant: Kelsey Loanes
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Carole Snyder
Production Project Manager: Camille Trentacoste
Procurement Manager: Mary Fischer
Senior Specialist, Program Planning and Support: Maura Zaldivar-Garcia
Manager, Rights Management: Rachel Youdelman
Senior Project Manager, Rights Management: Timothy Nicholls
Cover Designer: Black Horse Designs
Cover Art: Ivan kmit/Fotolia

Copyright © 2016 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the
United States of America. This publication is protected by copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise. For information regarding permissions, request forms and the appropriate contacts within
the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/
permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The copyright for Greenfoot is held by Michael Kölling. The Greenfoot system is available under the
GNU General Public License version 2 with the Classpath Exception.

Library of Congress Cataloging-in-Publication Data on File

Kölling, Michael.
   Introduction to programming with greenfoot object-oriented programming in java with games
and simulations / Michael Kölling. — 2nd edition.
    pages cm
  Includes bibliographical references and index.
 ISBN 978-0-13-405429-2 — ISBN 0-13-405429-6  1.  Greenfoot (Electronic resource)  2.  Object-
oriented programming (Computer science)—Study and teaching.  3.  Java (Computer program
language)  4.  Computer games—Programming.  I.  Title.
  QA76.64.K657 2016
  794.8'1526—dc23
� 2015000976

ISBN-13: 978-0-13-405429-2
ISBN-10: 0-13-405429-6

10 9 8 7 6 5 4 3 2 1

A01_KOLL4292_02_SE_FM.indd 4 2/3/15 9:41 AM

To my darling girl.

A01_KOLL4292_02_SE_FM.indd 5 2/3/15 9:41 AM

A01_KOLL4292_02_SE_FM.indd 6 2/3/15 9:41 AM

This page intentionally left blank

Contents

List of scenarios discussed in this book	 xiii
About the companion website	 xvi
Acknowledgments	 xvii
About the 2nd edition	 xix

		 Introduction� 1

	 Chapter 1	 Getting to know Greenfoot� 3

	 1.1	 Getting started� 3
	 1.2	 Objects and classes� 4
	 1.3	 Interacting with objects� 6
	 1.4	 Return types� 7
	 1.5	 Parameters� 8
	 1.6	 Greenfoot execution� 9
	 1.7	 A second example� 10
	 1.8	 Understanding the class diagram� 10
	 1.9	 Playing with asteroids� 12
	 1.10	 Source code� 13
		 Summary� 15

	 Chapter 2	 The first program: Little Crab� 17

	 2.1	 The Little Crab scenario� 17
	 2.2	 Making the crab move� 19
	 2.3	 Turning� 20
	 2.4	 Dealing with screen edges� 23
		 Summary of programming techniques� 27
		 Drill and practice� 28

A01_KOLL4292_02_SE_FM.indd 7 2/3/15 9:41 AM

viii | Contents

	 Chapter 3	 Improving the crab: more sophisticated programming� 31

	 3.1	 Adding random behavior� 31
	 3.2	 Adding worms� 35
	 3.3	 Eating worms� 36
	 3.4	 Creating new methods� 38
	 3.5	 Adding a Lobster� 40
	 3.6	 Keyboard control� 41
	 3.7	 Ending the game� 43
	 3.8	 Adding sound� 45
	 3.9	 Making your own sounds� 46
		 Summary of programming techniques� 49
		 Drill and practice� 50

	 Chapter 4	 Finishing the crab game� 52

	 4.1	 Adding objects automatically� 52
	 4.2	 Creating new objects� 54
	 4.3	 Variables� 55
	 4.4	 Assignment� 55
	 4.5	 Object variables� 56
	 4.6	 Using variables� 58
	 4.7	 Adding objects to the world� 58
	 4.8	 Save the World� 60
	 4.9	 Animating images� 61
	 4.10	 Greenfoot images� 62
	 4.11	 Instance variables (fields)� 63
	 4.12	 Using actor constructors� 66
	 4.13	 Alternating the images� 68
	 4.14	 The if/else statement� 69
	 4.15	 Counting worms� 70
	 4.16	 More ideas� 71
		 Summary of programming techniques� 72
		 Drill and practice� 73

	 Interlude 1	 Sharing your scenarios� 75

	 I1.1	 Sharing your scenario� 75
	 I1.2	 Publishing to the Greenfoot website� 75
	 I1.3	 Export to a Web page� 77
	 I1.4	 Export to application� 78
	 I1.5	 Export to Greenfoot archive� 78

A01_KOLL4292_02_SE_FM.indd 8 2/3/15 9:41 AM

Contents | ix

	 Chapter 5	 Scoring	 80

	 5.1	 WBC: The starting point� 81
	 5.2	 WhiteCell: constrained movement� 81
	 5.3	 Bacteria: making yourself disappear� 84
	 5.4	 Bloodstream: creating new objects� 85
	 5.5	 Side-scroll movement� 86
	 5.6	 Adding viruses� 87
	 5.7	 Collision: removing bacteria� 88
	 5.8	 Variable speed� 89
	 5.9	 Red blood cells� 89
	 5.10	 Adding borders� 90
	 5.11	 Finally: adding a score� 92
	 5.12	 Scoring in the World� 94
	 5.13	 Abstraction: generalizing the scoring� 97
	 5.14	 Adding game time� 100
		 Summary of programming techniques� 100
		 Drill and practice� 101

	 Chapter 6	 Making music: an on-screen piano� 103

	 6.1	 Animating the key� 104
	 6.2	 Producing the sound� 107
	 6.3	 Abstraction: creating multiple keys� 108
	 6.4	 Building the piano� 110
	 6.5	 Using loops: the while loop� 111
	 6.6	 Using arrays� 114
		 Summary of programming techniques� 119
		 Drill and practice� 120

	 Chapter 7	 Object interaction: an introduction� 122

	 7.1	 Interacting objects� 123
	 7.2	 Object references� 123
	 7.3	 Interacting with the world� 124
	 7.4	 Interacting with actors� 124
	 7.5	 The null value� 125
	 7.6	 Interacting with groups of actors� 126
	 7.7	 Using Java library classes� 127
	 7.8	 The List type� 129
	 7.9	 A list of leaves� 130

A01_KOLL4292_02_SE_FM.indd 9 2/3/15 9:41 AM

x | Contents

	 7.10	 The for-each loop� 130
		 Summary of programming techniques� 132
		 Drill and practice� 133

	 Chapter 8	 Interacting objects: Newton’s Lab� 134

	 8.1	 The starting point: Newton’s Lab� 134
	 8.2	 Helper classes: SmoothMover and Vector� 136
	 8.3	 The existing Body class� 139
	 8.4	 First extension: creating movement� 141
	 8.5	 The Color class� 142
	 8.6	 Adding gravitational force� 143
	 8.7	 Applying gravity� 146
	 8.8	 Trying it out� 149
	 8.9	 Gravity and music� 151
		 Summary of programming techniques� 152
		 Drill and practice� 153

	 Chapter 9	 Collision detection: Asteroids� 154

	 9.1	 Investigation: what is there?� 155
	 9.2	 Painting stars� 156
	 9.3	 Turning� 159
	 9.4	 Flying forward� 160
	 9.5	 Colliding with asteroids� 162
	 9.6	 Game Over� 165
	 9.7	 Adding fire power: the proton wave� 168
	 9.8	 Growing the wave� 169
	 9.9	 Interacting with objects in range� 172
	 9.10	 Further development� 175
		 Summary of programming techniques� 176
		 Drill and practice� 177

	 Interlude 2	 The Greeps competition� 179

	 I2.1	 How to get started� 180
	 I2.2	 Programming your Greeps� 181
	 I2.3	 Running the competition� 182
	 I2.4	 Technicalities� 183

A01_KOLL4292_02_SE_FM.indd 10 2/3/15 9:41 AM

Contents | xi

	 Chapter 10	 Creating images and sound	 184

	 10.1	 Preparation� 184
	 10.2	 Working with sound� 186
	 10.3	 Sound recording in Greenfoot� 187
	 10.4	 External sound recording and editing� 187
	 10.5	 Sound file formats and file sizes� 189
	 10.6	 More control: the GreenfootSound class� 191
	 10.7	 Working with images� 192
	 10.8	 Image files and file formats� 192
	 10.9	 Drawing images� 194
	 10.10	 Combining image files and dynamic drawing� 196
		 Summary� 198
		 Drill and practice� 199

	 Chapter 11	 Simulations	 202

	 11.1	 Foxes and rabbits	 204
	 11.2	 Ants	 206
	 11.3	 Collecting food	 208
	 11.4	 Setting up the world	 211
	 11.5	 Adding pheromones	 211
	 11.6	 Path forming	 213
		 Summary	 214

	 Chapter 12	 Greenfoot and the Kinect	 216

	 12.1	 What the Kinect can do	 217
	 12.2	 Installing the software	 219
	 12.3	 Getting started	 220
	 12.4	 The simple camera	 221
	 12.5	 The next step: greenscreen	 222
	 12.6	 Stick-figure: tracking users	 223
	 12.7	 Painting with your hands	 227
	 12.8	 A simple Kinect game: Pong	 231
		 Summary	 235
		 Drill and practice	 235

	 Chapter 13	 Additional scenario ideas	 237

	 13.1	 Marbles	 237
	 13.2	 Lifts	 239

A01_KOLL4292_02_SE_FM.indd 11 2/3/15 9:41 AM

xii | Contents

	 13.3	 Boids	 239
	 13.4	 Explosion	 241
	 13.5	 Breakout	 241
	 13.6	 Platform jumper	 242
	 13.7	 Wave	 243
	 13.8	 Map	 244
		 Summary	 245

	 Appendix A: 	 Installing Greenfoot	 247

	 A.1	 Installing Greenfoot	 247
	 A.2	 Installing the book scenarios	 247

	 Appendix B: 	 Greenfoot API 	 248

	 Appendix C:	 Collision detection 	 255

	 C.1	 Method summary	 255
	 C.2	 Convenience methods	 255
	 C.3	 Low versus high resolution	 256
	 C.4	 Intersecting objects	 256
	 C.5	 Objects at offset	 257
	 C.6	 Neighbors	 258
	 C.7	 Objects in range	 259

	 Appendix D: 	 Some Java details 	 260

	 D.1	 Java data types	 260
	 D.2	 Java control structures	 262
	 D.3	 Java control structures	 264

	 Index			 271

A01_KOLL4292_02_SE_FM.indd 12 2/3/15 9:41 AM

List of scenarios discussed
in this book

Leaves and Wombats 	 (Chapter 1)
This is a simple example showing wombats moving around on screen, occasionally eat-
ing leaves. The scenario has no specific purpose other than illustrating some important
object-oriented concepts and Greenfoot interactions.

Asteroids 1 	 (Chapter 1)
This is a simple version of a classic arcade game. You fly a spaceship through space
and try to avoid being hit by asteroids. At this stage, we only use the scenario to make
some small changes and illustrate how to edit source code to change program behavior.

Little Crab 	 (Chapters 2, 3, 4)
This is our first full development. Starting from almost nothing, we develop a simple
game slowly, adding things such as movement, keyboard control, sound, and many
other elements of typical games.

Fat Cat 	 (Chapter 2)
This is a small scenario serving as a basis for exercises with methods calls and simple
statements. Make the cat perform while you practice your Java.

Stickman 	 (Chapter 3)
Another small exercise scenario. This does not do much to start with, and we use it to
do some exercises with if-statements at the end of the chapter.

White Blood Cell (WBC) 	 (Chapter 5)
A typical side-scrolling game. We develop it from a very primitive, rudimentary start
to a full, playable game. You steer a white blood cell through an artery to catch and
neutralize bacteria.

Piano 	 (Chapter 6)
An on-screen piano that you can really play.

Bubbles 	 (Chapter 6)
A small scenario serving as a platform to practice writing some loops.

A01_KOLL4292_02_SE_FM.indd 13 2/3/15 9:41 AM

xiv | List of scenarios discussed in this book

Autumn 	 (Chapter 7)
This scenario shows leaves floating in the air, occasionally blown around. It is not a
game, or any completed project in any sense, but it gives a good first look at collision
detection and lists.

Newton’s Lab 	 (Chapter 8)
Newton’s Lab is a simulation of the motion of stars and planets in space. Gravity plays a
central role here. We also make a variant of this that combines gravity with making music,
ending up with musical output triggered by objects under gravitational movement.

Asteroids 2 	 (Chapter 9)
We come back to the asteroids example from Chapter 2. This time, we investigate more
fully how to implement it and add some more game elements.

Loop Practice 	 (Chapter 9)
As the name suggests: a scenario with the sole purpose of reinforcing the use of loops.
This scenario could also be used much earlier for similar exercises.

Greeps 	 (Interlude 2)
Alien creatures land on earth to collect tomatoes. This scenario is a competition:
Program the greeps so that they collect as many tomatoes in a limited time.

Color Chart 	 (Chapter 10)
A small scenario just to display a chart of RGB colors.

Smoke 	 (Chapter 10)
This scenario demonstrated a visual effect: smoke trailing a moving ball. In general, it
serves to discuss dynamic drawing, to create more interesting visuals.

Path Follower 	 (Chapter 10)
A small scenario demonstrating a creature following a colored path on the ground.
This example is used to practice more work with color.

Foxes and Rabbits 	 (Chapter 11)
A predator/prey simulation. This scenario is fairly complete, and we use it to make
some experiments and gain some understanding about the nature of simulations.

Ants	 (Chapter 11)
A simulation of ant colonies searching for food, communicating via drops of phero-
mones left on the ground.

Simple Camera 	 (Chapter 12)
Showing a camera image on screen, using the Microsoft Kinect.

Greenscreen 	 (Chapter 12)
Using Kinect input to create a greenscreen effect (placing a user in front of a fixed
background image).

A01_KOLL4292_02_SE_FM.indd 14 2/3/15 9:41 AM

Stick Figure 	 (Chapter 12)
A demonstration of skeleton tracking with the Microsoft Kinect.

Body Paint 	 (Chapter 12)
We extend the skeleton tracking to allow multiple users to paint on screen by waving
their hands in the air. Again, making use of the Microsoft Kinect.

Kinect Pong 	 (Chapter 12)
A very simple game, but this time with gesture input instead of keyboard control.

Fred With Radio 	 (Chapter 12)
A last demo scenario for the Microsoft Kinect. We do not discuss this scenario in the
chapter, but it serves as a model demo for studying how a cartoon character could be
controlled by gestures.

The following scenarios are presented in Chapter 13, and selected aspects of them briefly
discussed. They are intended as inspiration for further projects.

Marbles
A simulation of a marble board game. Marbles have to be cleared of the board within
a limited number of moves. Contains simple physics.

Lifts
A start of a lift simulation. Incomplete at this stage—can be used as a start of a project.

Boids
A demo showing flocking behavior: A flock of birds flies across the screen, aiming to
stick together while avoiding obstacles.

Explosion
A demo of a more sophisticated explosion effect.

Breakout
This is the start of an implementation of the classic Breakout game. Very incomplete,
but with an interesting visual effect.

Platform jumper
A demo of a partial implementation of an ever-popular genre of games: platform
jumpers.

Wave
This scenario is a simple demonstration of a physical effect: the propagation of a wave
on a string.

Map
A scenario showing use of live data from the Internet, in this case Google maps.

List of scenarios discussed in this book | xv

A01_KOLL4292_02_SE_FM.indd 15 2/3/15 9:41 AM

Additional material and resources for this book can be found at
http://www.greenfoot.org/book/

For students:
●	 The Greenfoot software

●	 The scenarios discussed in this book

●	 The Greenfoot Gallery—a scenario showcase

●	 Tutorial videos

●	 A discussion forum

●	 Technical support

For Instructors:
●	 The “Greenroom,” a free, instructor-only community site containing many

teaching resources, worksheets, project ideas, and a discussion forum. Sign up
here and talk to thousands of other instructors who are using Greenfoot.
http://greenroom.greenfoot.org

●	 Scenarios are available to qualified instructors. Contact your Pearson representative
or visit the Pearson Instructor Resource Center.
http://www.pearsonhighered.com/irc

About the companion website

A01_KOLL4292_02_SE_FM.indd 16 2/3/15 9:41 AM

Acknowledgments

This book is the tip of an iceberg. It is an introduction to programming with Java,
but this kind of approach would not be possible without the Greenfoot ecosystem.
This book builds on many years of work by several people who have helped build
Greenfoot.

The book rests first and foremost on the software itself—Greenfoot—but this is not the
whole story. Much time and effort has gone into the design of websites (the Greenfoot
community website, the Greenroom), development of material, building and support-
ing a user community, workshops and outreach, and a number of people have played
very important roles in this.

Poul Henriksen was the first person to join me in this project. He started the Greenfoot
implementation as part of his Masters thesis and was the main contributor to the
software for many of the early years. Davin McCall, Bruce Quig, and Neil Brown are
the next wave of designers and developers who have worked on Greenfoot for many
years and shaped large parts of the design and implementation of the system as it is
today. It is not easy to maintain a software system of this size with such few people and
resources, but all are outstanding programmers and have managed to develop a system
that has survived for almost ten years so far and runs with few problems on millions of
computers around the world. This is an outstanding achievement, and I have been very
lucky to have these people on my team.

Other important contributions to the ecosystem were by Ian Utting and our more
recent team members, Amjad Altadmri and Fabio Hedayioglu. A wide variety of activ-
ities has helped to make the Greenfoot community what it is today.

The development of Greenfoot is being supported by Oracle Inc., through charitable
donations over many years. Their consistent and ongoing support have allowed us to
maintain our group; without this, Greenfoot would not exist. We are very grateful for
their commitment and substantial contribution to the education community.

The people at Pearson Education have struggled on bravely in the face of the many
delays caused by my missing of every possible deadline for sending in this manuscript.
Tracy Johnson has worked with me on this book from the very beginning, through the
first edition, and now the second one. She has been consistently positive, excited and
encouraging, and her support has made a huge difference. Camille Trentacoste and
Carole Snyder have done a lot of the important detail work to get this book produced,
and I am grateful for their input and help.

A01_KOLL4292_02_SE_FM.indd 17 2/3/15 9:41 AM

The first edition of this book was reviewed by a number of people who have provided
very detailed, thoughtful and useful feedback. They are Carolyn Oates, Damianne
President, Detlef Rick, Gunnar Johannesmeyer, Josh Fishburn, Mark Hayes, Marla
Parker, Matt Jadud, Todd O’Bryan, Lael Grant, Jason Green, Mark Lewis, Rodney
Hoffman, and Michael Kadri. They helped spotting many errors and pointed out
many opportunities for improvement. Josh Buhl and Adrienne Decker made a number
of very useful suggestions after the publication of the first edition that have helped
improve the examples for the second edition.

I am very grateful to Kerstin Wachholz for her expert proofreading—she found and
fixed many of my errors and removed the warts of my language—, and to my good
friend Michael Caspersen for providing encouragement very early in the project that
was very important to me, partly because it helped improve the book, but most impor-
tantly because it encouraged me to believe that the idea of the Greenfoot system itself
might be interesting to teachers and worthwhile completing.

xviii | Acknowledgments

A01_KOLL4292_02_SE_FM.indd 18 2/3/15 9:41 AM

This is the second edition of this book. It tries to stick with what worked well the
first time around, and to improve the parts that were not as smooth as they could
have been.

We maintain the overall style of the book: the hands-on presentation of programming
projects, the practical work interspersed with discussion and explanation, and the gen-
eral tone. This has worked very well.

However, there were points in the first edition where readers found progression chal-
lenging when the pace picked up in the second half of the book. We have now added
two chapters to introduce some concepts more slowly and gradually, and to pro-
vide more practice with the most difficult concepts. We have also added a significant
amount of exercises to each chapter to provide much more practice and reinforcement
of the concepts covered. This includes the presentation and use of many more practice
scenarios.

We have also added a chapter about programming Greenfoot with the Microsoft
Kinect. While not every reader can make use of this (because it requires having the
hardware available), the level of enthusiasm and excitement that these examples have
generated when we presented them in workshops justify, in our view, inclusion here.
There is so much potential.

And, of course, the book has been updated to make use of new features of more recent
versions of the Greenfoot software. We have adapted Greenfoot to make some popular
tasks possible or easier and to illustrate some concepts better. The book incorporates
this in the new scenarios.

Overall, we hope that the added material serves to make your path through the maze
that is the learning of programming even more smooth and more interesting.

About the 2nd edition

A01_KOLL4292_02_SE_FM.indd 19 2/3/15 9:41 AM

A01_KOLL4292_02_SE_FM.indd 20 2/3/15 9:41 AM

This page intentionally left blank

Introduction

Welcome to Greenfoot! In this book, we will discuss how to program graphical
computer programs, such as simulations and games, using the Java Programming
Language and the Greenfoot environment.

There are several goals in doing this: one is to learn programming, another is to
have fun along the way. While the examples we discuss in this book are specific to
the Greenfoot environment, the concepts are general: working through this book will
teach you general programming principles in a modern, object-oriented programming
language. However, it will also show you how to make your own computer game, a
biology simulation, or an on-screen piano.

This book is very practically oriented. Chapters and exercises are structured around
real, hands-on development tasks. First, there is a problem that we need to solve, then
we look at language constructs and strategies that help us solve the problem. This is
quite different from many introductory programming textbooks that are often struc-
tured around programming language constructs.

As a result, this book starts with less theory, and more practical activity than most
programming books. This is also the reason we use Greenfoot: It is the Greenfoot
environment that makes this possible. Greenfoot allows us to play. And that does not
only mean playing computer games; it means playing with programming: we can cre-
ate objects, move them around on screen, call their methods, and observe what they
do, all interactively and easily. This leads to a more hands-on approach to program-
ming than what would be possible without such an environment.

A more practical approach does not mean that the book does not cover the necessary
theory and principles as well. It’s just that the order is changed. Instead of introduc-
ing a concept theoretically first and then doing some exercises with it, we often jump
right in and use a construct, initially explaining only as much as necessary to solve the
task at hand, then come back to the theoretical background later. We typically follow
a spiral approach: we introduce some aspects of a concept when we first encounter it,
then revisit it later in another context, and gradually deepen our understanding.

The emphasis throughout is to make the work we do interesting, relevant, and enjoy-
able. There is no reason why computer programming has to be dry, formal, or boring.
Having fun along the way is okay. We think we can manage to make the experience
interesting and pedagogically sound at the same time.

M00_KOLL4292_02_SE_INT.indd 1 2/3/15 1:53 PM

2 | Introduction

This book can be used both as a self-study book or as a textbook in a programming
course. Exercises are worked into the text throughout the book—if you do them all,
you will come out of this as a fairly competent programmer.

The projects discussed in this book are easy enough that they can be managed by high
school students, but they are also open and extendable enough that even seasoned
programmers can find interesting and challenging aspects to do. While Greenfoot is
an educational environment, Java is not a toy language. Since Java is our language of
choice for this book, the projects discussed here (and others you may want to create in
Greenfoot) can be made as complex and challenging as you like.

While it is possible to create simple games quickly and easily in Greenfoot, it is equally
possible to build highly sophisticated simulations of complex systems, possibly using
artificial intelligence algorithms, agent technology, database connectivity, network
communication, or anything else you can think of. Java is a very rich language that
opens the whole world of programming, and Greenfoot imposes no restrictions as to
which aspects of the language you can use.

In other words: Greenfoot scales well. It allows easy entry for young beginners, but
experienced programmers can also implement interesting, sophisticated scenarios.

Programming is a creative discipline, and Greenfoot is a tool that helps you build what
you invent.

M00_KOLL4292_02_SE_INT.indd 2 2/3/15 1:53 PM

Chapter

1

This book will show you how to develop computer games and simulations with
Greenfoot, a development environment. In this chapter, we shall take a look at
Greenfoot itself and see what it can do and how to use it. We do this by trying out
some existing programs.

Once we are comfortable with using Greenfoot, we shall jump right into writing a
game ourselves.

The best way to read this chapter (and indeed the whole book) is by sitting at your
computer with Greenfoot open on your screen and the book open on your desk. We
will regularly ask you to do things in Greenfoot while you read. Some of the tasks you
can skip; however, you will have to do some in order to progress in the chapter. In any
case, you will learn most if you follow along and do them.

At this stage, we assume that you have already installed the Greenfoot software and
the book scenarios (described in Appendix A). If not, read through the appendix first.

	 1.1	 Getting started
Start Greenfoot and open the scenario leaves-and-wombats from the Greenfoot book
scenarios folder. You can do this by choosing Scenario–Open1 from the menu.

topics:	 �the Greenfoot interface, interacting with objects, invoking methods, running
a scenario

concepts: 	 object, class, method call, parameter, return value

Getting to know
Greenfoot

1	 We use this notation to tell you to select functions from the menu. Scenario–Open refers to the
Open item in the Scenario menu.

M01_KOLL4292_02_SE_C01.indd 3 2/2/15 5:08 PM

4 | Chapter 1 ■ Getting to know Greenfoot

You will now see the Greenfoot main window, with the scenario open, looking similar
to Figure 1.1.

The main window consists of three main areas and a couple of extra buttons. The
main areas are:

■	 The world. The largest area covering most of the screen (a sand-colored grid in this
case) is called the world. This is where the program will run and we will see things
happen.

■	 The class diagram. The area on the right with the beige-colored boxes and arrows is
the class diagram. We shall discuss this in more detail shortly.

■	 The execution controls. The Act, Run, and Reset buttons and the speed slider at the
bottom are the execution controls. We’ll come back to them in a little while, too.

	 1.2	 Objects and classes
We shall discuss the class diagram first. The class diagram shows us the classes involved
in this scenario. In this case, they are World, WombatWorld, Actor, Wombat, and Leaf.

We shall be using the Java programming language for our projects. Java is an object-
oriented language. The concepts of classes and objects are fundamental in object
orientation.

Let us start by looking at the Wombat class. The class Wombat stands for the general
concept of a wombat—it describes all wombats. Once we have a class in Greenfoot, we

Class
diagram

World

Execution
controls

Figure 1.1
The Greenfoot main
window

Concept
Greenfoot
scenarios consist
of a set of
classes.

M01_KOLL4292_02_SE_C01.indd 4 2/2/15 5:08 PM

1.2 Objects and classes | 5

can create objects from it. (Objects are also often referred to as instances in program-
ming—the two terms are synonyms.)

A wombat, by the way, is an Australian marsupial (Figure 1.2). If you want to find out
more about them, do a Web search—it should give you plenty of results.

Right-click3 on the Wombat class, and you will see the class menu pop up (Figure 1.3a). The first
option in that menu, new Wombat(), lets us create new wombat objects. Try it out.

You will see that this gives you a small picture of a wombat object, which you can
move on screen with your mouse (Figure 1.3b). Place the wombat into the world by
clicking anywhere in the world (Figure 1.3c).

3	 On Mac OS, use ctrl-click instead of right-click if you have a one-button mouse.

2	 Image source: Marco Tomasini/Fotolia

Figure 1.2
A wombat2

Figure 1.3
a) The class menu
b) Dragging a
new object
c) Placing the object

a) b) c)

M01_KOLL4292_02_SE_C01.indd 5 2/3/15 5:52 PM

6 | Chapter 1 ■ Getting to know Greenfoot

Once you have a class in Greenfoot, you can create as many objects from it as you like.Concept
Many objects
can be created
from a class.

Exercise 1.1  Create some more wombats in the world. Create some leaves.

Currently, only the Wombat and Leaf classes are of interest to us. We shall discuss the
other classes later.

	 1.3	 Interacting with objects
Once we have placed some objects into the world, we can interact with these objects
by right-clicking them. This will pop up the object menu (Figure 1.4). The object menu
shows us all the operations this specific object can perform. For example, a wombat’s
object menu shows us what this wombat can do (plus two additional functions, Inspect
and Remove, which we shall discuss later).

In Java, these operations are called methods. It cannot hurt to get used to standard
terminology straight away, so we shall also call them methods from now on. We can
invoke a method by selecting it from the menu.

Concept
Objects have
methods.
Invoking these
performs an
action.

Exercise 1.2  Invoke the move() method on a wombat. What does it do? Try it several
times. Invoke the turnLeft() method. Place two wombats into your world and make
them face each other.

Figure 1.4
The wombat’s object
menu

M01_KOLL4292_02_SE_C01.indd 6 2/2/15 5:09 PM

1.4 Return types | 7

In short: we can start to make things happen by creating objects from one of the
classes provided, and we can give commands to the objects by invoking their methods.

Let us have a closer look at the object menu. The move and turnLeft methods are listed as:

void move()
void turnLeft()

We can see that the method names are not the only thing shown. There is also the word
void at the beginning and a pair of parentheses at the end. These two cryptic bits of infor-
mation tell us what data goes into the method call, and what data comes back from it.

	 1.4	 Return types
The word at the beginning is called the return type. It tells us what the method returns
to us when we invoke it. The word void means “nothing” in this context: methods
with a void return type do not return any information. They just carry out their
action, and then stop.

Any word other than void tells us that the method returns some information when
invoked, and of what type that information is. In the wombat’s menu (Figure 1.4),
we can also see the words int and boolean. The word int is short for “integer”
and refers to whole numbers (numbers without a decimal point). Examples of integer
numbers are 3, 42, –3, and 12000000.

The type boolean has only two possible values: true and false. A method that
returns a boolean will return either the value true or the value false to us.

Methods with void return types are like commands for our wombat. If we invoke the
turnLeft method, the wombat obeys and turns left. Methods with non-void return
types are like questions. Consider the canMove method:

boolean canMove()

When we invoke this method, we see a result similar to that shown in Figure 1.5,
displayed in a dialog box. The important information here is the word “true,” which

Figure 1.5
A method result

Concept
The return type
of a method
specifies what a
method call will
return.

Concept
A method with a
void return type
does not return
a value.

M01_KOLL4292_02_SE_C01.indd 7 2/2/15 5:09 PM

8 | Chapter 1 ■ Getting to know Greenfoot

was returned by this method call. In effect, we have just asked the wombat “Can you
move?”, and the wombat has answered by saying “Yes!” (true).

Exercise 1.3  Invoke the canMove() method on your wombat. Does it always return
true? Or can you find situations in which it returns false?

Try out another method with a return value:

int getLeavesEaten()

Using this method, we can get the information how many leaves this wombat has eaten.

Exercise 1.4  Using a newly created wombat, the getLeavesEaten() method will
always return zero. Can you create a situation in which the result of this method is not
zero? (In other words: can you make your wombat eat some leaves?)

Methods with non-void return types usually just tell us something about the object
(Can it move? How many leaves has it eaten?), but do not change the object. The wom-
bat is just as it was before we asked it about the leaves. Methods with void return types
are usually commands to the objects that make it do something.

	 1.5	 Parameters
The other bit in the method menu that we have not yet discussed is the parentheses
after the method name.

Return type	 Parameter

int getLeavesEaten()
void setDirection(int direction)

The parentheses after the method name hold the parameter list. This tells us whether the
method requires any additional information to run, and if so, what kind of information.

If we see only a pair of parentheses without anything else between it (as we have in
all methods so far), then the method has an empty parameter list. In other words, it
expects no parameters—when we invoke the method, it will just run. If there is any-
thing between the parentheses, then the method expects one or more parameters—
additional information that we need to provide.

Let us try out the setDirection method. We can see that it has the words int direction
written in its parameter list. When we invoke it, we see a dialog box similar to the one
shown in Figure 1.6.

Concept
Methods with
void return
types represent
commands;
methods with
non-void return
types represent
questions.

Concept
A parameter is
a mechanism to
pass additional
data to a method.

Concept
Parameters and
return values
have types.
Examples of
types are int for
numbers, and
boolean for
true/false values.

M01_KOLL4292_02_SE_C01.indd 8 2/2/15 5:09 PM

1.6 Greenfoot execution | 9

The words int direction tell us that this method expects one parameter of type int, which speci-
fies a direction. A parameter is an additional bit of data we must provide for this method to
run. Every parameter is defined by two words: first the parameter type (here: int) and then a
name, which gives us a hint what this parameter is used for. If a method has a parameter, then
we must provide this additional information when we invoke the method.

In this case, the type int tells us that we now should provide a whole number, and the
name suggests that this number somehow specifies the direction to turn to.

At the top of the dialog is a comment that tells us a little more: the direction param-
eter should be between 0 and 3.

Figure 1.6
A method call dialog

Exercise 1.5  Invoke the setDirection(int direction) method. Provide a param-
eter value and see what happens. Which number corresponds to which direction?
Write them down. What happens when you type in a number greater than 3? What
happens if you provide input that is not a whole number, such as a decimal number (2.5)
or a word (three)?

The setDirection method expects only a single parameter. Later, we shall see cases
where methods expect more than one parameter. In that case, the method will list all
the parameters it expects between the parentheses.

The description of each method shown in the object menu, including the return type,
method name, and parameter list, is called the method signature.

We have now reached a point where you can do the main interactions with Greenfoot
objects. You can create objects from classes, interpret the method signatures, and
invoke methods (with and without parameters).

	 1.6	 Greenfoot execution
There is one other way of interacting with Greenfoot objects: The execution controls.

Concept
The specification
of a method,
which shows its
return type, name,
and parameters
is called its
signature.

M01_KOLL4292_02_SE_C01.indd 9 2/2/15 5:30 PM

